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Outline of Document 31 

In this supplementary document we outline the methods and data used to explore and analyse 32 

the patterns and drivers of Anopheles stephensi population dynamics across South Asia and 33 

the Middle East. In Supplementary Information 1, we present an overview of the systematic 34 

search strategy used to collate the references containing the extracted and analysed data, as 35 

well as details about the initial pre-processing steps applied to said data. In Supplementary 36 

Information 2, we describe the statistical methodologies used to process and analyse this 37 

extracted data. The output of these analyses forms the basis for the results presented in the 38 

main text. Finally, in Supplementary Information 3, we present a number of additional figures 39 

and tables to support the work detailed in the main text. 40 

  41 
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Supplementary Information 1: Description of Systematic Review: 42 

Data Extraction and Initial Pre-Processing 43 

Systematic Review: Search Procedure and Record Screening 44 

We collated references from two previously published systematic reviews of literature relating 45 

to Anopheles stephensi (focusing on its presence/absence across a wide geographical range1 46 

and its seasonal dynamics in India2 respectively), and updated these previous searches (both 47 

conducted in 2017) by searching Web of Science and PubMed databases from January 2017 48 

for further relevant references containing temporally disaggregated Anopheles stephensi 49 

catch data. Key words for this search were: 50 

(((anophel*) AND ((India) OR (BURMA) OR (MYANMAR) OR (BANGLADESH) OR 51 

(THAILAND) OR (ISLAMIC REPUBLIC OF IRAN) OR (ETHIOPIA) OR (DJIBOUTI) 52 

OR (SUDAN))) AND (("2017"[Date - Publication] : "3000"[Date - Publication])) OR 53 

((anophel*) AND ((Pakistan) OR (Iran) OR (Afghanistan)) AND (("1990"[Date - 54 

Publication] : "3000"[Date - Publication])) 55 

with references for Pakistan, Iran and Afghanistan searched for over an extended time-period 56 

(i.e. date range of 1990-2020 rather than 2017-2020) to ensure completeness of the collated 57 

references, and fill in countries not included during previous reviews. Our searches identified 58 

a total of 926 records, which were screened according to the following Inclusion/Exclusion 59 

criteria: 60 

Inclusion Criteria: 61 

• Reference contains temporally disaggregated adult mosquito catch data for 62 

An. stephensi, at a temporal resolution of monthly or finer.  63 

• The time-period spanned by the survey must be at least 10 consecutive months in 64 

duration and have caught at least a total of 25 An. stephensi over the period for which 65 

catches were being carried out. 66 

Exclusion Criteria: 67 

• Mosquito catch data is not temporally disaggregated to a sufficient extent (e.g. catches 68 

were done yearly or seasonally rather than monthly). 69 

• Mosquito catch data was collected as part of a trial assessing a vector control 70 

intervention (which would perturb the natural dynamics of the vector, rendering the 71 

data unrepresentative of the population dynamics in the absence of control). 72 

• The reference only contained information on immature/larval mosquito life cycle stages 73 

rather than mature adults.  74 

• The reference contained insufficient information to geolocate the area in which the 75 

study was conducted to at least the administrative unit 2 level.  76 

Overall, a total of 34 references were collated containing 62 time-series from catch surveys 77 

carried out in distinct locations from across Afghanistan (n=2), Djibouti (n=1), India (n=30), 78 

Iran (n=17), Myanmar (n=5) and Pakistan (n=7) from the systematic review. These were 79 

further supplemented with 2 references (from Pakistan and India respectively, yielding a total 80 

of 3 time-series) collated as part of a review of the bionomics of An. stephensi previously 81 

carried out3, yielding a total of 65 time-series from these 36 references. The next section 82 

describes in further detail about extraction and collation of the data associated with each study. 83 

Systematic Review: Data Extraction, Collation and Initial Processing 84 
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Entomological Data Extraction  85 

For each reference, we extracted all relevant entomological catch data provided that pertained 86 

specifically to An. stephensi. Where data were presented in a table, data was copied directly 87 

from the table. Where the data were in a graph, data were extracted using the DataThiefTM 88 

software. This yielded a total of 65 time series of monthly mosquito catch data (no reference 89 

presented data at a finer temporal resolution), ranging in length from 10 – 60 months, with a 90 

mean time-period of 15.6 months and a median time-period of 12 months, a mean catch size 91 

of 758 and a median catch size of 289.  92 

Supplementary Table 1: Number of time series collated according to method of 93 

mosquito collection. 94 

 Landing 
Catch 

Resting 
Collections 

Pit 
Collections 

Light Traps Pyrethrum 
Spray Catch 

# Time-Series 3 33 2 4 14 

 95 

Of the collated studies, the majority sampled mosquitoes via resting collections (n=33), though 96 

there was significant variation between surveys as to where mosquitoes had been sampled 97 

(e.g. human dwellings or cattlesheds), when sampling had been carried out (daytime, night-98 

time or overnight) and for the small number of landing catch studies collated (n=3), which bait 99 

had been used (cattle or humans). Of the 65 collated time-series, 56 presented results arising 100 

from a survey carried out using 1 catch methodology (described in Supplementary Table 1 101 

above). 9 time-series represented results which presented the total number of Anopheles 102 

stephensi mosquitoes caught across all methods of collection and could not be disaggregated 103 

by catch-type. They have not been counted in Supplementary Table 1 above. 104 

The primary focus of these analyses was to characterise annual and seasonal patterns of 105 

variation in An. stephensi abundance. Given this, and also that variations in time-series length 106 

are a factor known to affect their statistical properties4 (and therefore limit the comparability of 107 

the time series gathered and analysed here), all time-series were standardised to be 12 108 

months in length. For time series containing more than 12 time points (i.e. time series that 109 

spanned longer than a single year), we averaged the recorded catches for a given month. For 110 

time-series containing less than 12 months of data, this was not carried out. Where the study 111 

has been initiated in a month other than January, and concluded in a month other than 112 

December, the recorded counts were reordered to yield a complete time series running from 113 

January to December (and then subsequently adjusted so that the month of peak vector 114 

density is arbitrarily set to month 7 when plotting the time-series, to enable graphical 115 

comparability, see Fig.2A).  116 

The results presented in the collated references were frequently presented in the form 117 

standardised by sampling effort, such as Man-Hour Density (MHD). They do not therefore 118 

represent the total number of mosquitoes caught each month (required for the statistical 119 

framework utilised to characterise temporal properties) and therefore, where information on 120 

sampling effort was present (e.g. number of hours spent sampling/catching An. stephensi, 121 

number of households or cattlesheds searched, number of trap nights etc), we used this 122 

information to convert MHD back to the raw counts. In the small number of instances where 123 

there was variable sampling effort across the time series (which would bias the conversion 124 

away from the underlying population abundance), we conservatively used the lowest sampling 125 

effort recorded across the time series in the conversion. Together, this allowed us to produce 126 
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an estimate of the number of mosquitoes sampled (a raw count, based on equal sampling 127 

effort across the time series). See Supplementary Data: Extracted Entomological Data for 128 

more information about how each time-series was processed).  129 

Study Geolocation and Environmental Covariate Extraction 130 

For each study where geolocation was possible, we recorded the location at both the 131 

administrative unit 1 and 2 level, based on information provided in the reference. A number of 132 

the references identified in our review had previously been utilised as part of previous 133 

reviews1,2 – where this data was available, these descriptions of study location were used. For 134 

each location, we then extracted a suite of satellite-derived environmental covariates. These 135 

environmental covariates consist of raster layers spanning all countries in which studies had 136 

been conducted in (i.e. Afghanistan, Djibouti, India, Iran, Myanmar and Pakistan) at a 2.5 arc-137 

minute (~5km by 5km, depending on the exact location and distance from the equator) spatial 138 

resolution. The covariates utilised here were initially selected from a set of 19 derived from the 139 

BioClimatic variables (a suite of biological relevant covariates defined from monthly rainfall 140 

and temperature satellite data5, making the strong assumption that these variables, which 141 

represent location averages over the period 1970-2000, adequately describe the climactic 142 

factors present in the periods spanned by our studies, which were predominantly conducted 143 

after 2000) as well as measures of landcover and urbanicity6, population density7,8 and 144 

enhanced vegetation index9,10. This provided a total of 43 covariates, many of which were 145 

highly correlated with one another. To reduce the degree of this multicollinearity, we generated 146 

a reduced subset of covariates using tools available in the tidymodels collection of R 147 

packages11 that aim to minimise the Spearman rank correlation coefficients between retained 148 

covariates, and also exclude covariates where there is minimal variation for that covariate 149 

across the full dataset, leaving 19 covariates in total. In addition to the environmental 150 

covariates described above, for each of the administrative units a survey had been carried out 151 

in, we also collated daily rainfall estimates for the time-period the survey had been conducted 152 

in, using the “The Climate Hazards Group Infrared Precipitation With Stations” (CHIRPS) 153 

dataset12. These data were aggregated up to the same temporal resolution as the An. 154 

stephensi catch data (i.e. monthly). These rainfall data were used to calculate the cross-155 

correlation coefficient between mosquito catches and rainfall.  156 

  157 
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Supplementary Table 2: The Complete Suite of Covariates Collated and Subsequently 158 

Reduced for Modelling and Prediction of Seasonal Population Dynamics 159 

# Variable  Temporal Resolution Source 
1 BioClimatic - Annual Mean Temperature Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

2 BioClimatic - Mean Diurnal Range Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

3 BioClimatic - Isothermality Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

4 BioClimatic - Temperature Seasonality Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

5 BioClimatic - Max Temperature of Warmest 
Month 

Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

6 BioClimatic - Min Temperature of Coldest 
Month 

Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

7 BioClimatic - Temperature Annual Range Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

8 BioClimatic - Mean Temperature of Wettest 
Quarter 

Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

9 BioClimatic - Mean Temperature of Driest 
Quarter 

Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

10 BioClimatic - Mean Temperature of 
Warmest Quarter 

Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

11 BioClimatic - Mean Temperature of Coldest 
Quarter 

Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

12 BioClimatic - Annual Precipitation Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

13 BioClimatic - Precipitation of Wettest Month Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

14 BioClimatic - Precipitation of Driest Month Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

15 BioClimatic - Precipitation Annual 
Coefficient of Variation 

Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

16 BioClimatic - Precipitation of Wettest 
Quarter 

Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

17 BioClimatic - Precipitation of Driest Quarter Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

18 BioClimatic - Precipitation of Warmest 
Quarter 

Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

19 BioClimatic - Precipitation of Coldest 
Quarter 

Annual Average, 1970 - 2000 https://www.worldclim.org/bioclim 

20 Population Density 1992-2020, using the closest year 
value to the year of the study  

http://www.worldpop.org.uk  

21 Enhanced Vegetation Index 1992-2020, using the closest year 
value to the year of the study 

https://modis.gsfc.nasa.gov/data/datapro
d/mod13.php  

22 Landcover 1992-2020, using the closest year 
value to the year of the study 

https://maps.elie.ucl.ac.be/CCI/viewer/ind
ex.php  

23 Average Monthly Catch Calculated empirically for each time-
series 

NA 

24 Maximum proportion of total annual rainfall 
in any consecutive 4 month period 

Calculated empirically for each 
location and time-series 

NA 

25 Country survey had been carried out in Calculated empirically for each time-
series (grouped into “India”, “Iran” 
and “other”). 

NA 

Note: There are 43 covariates total here, as Landcover contains 19 distinct covariates (each 160 

describing the proportion of cover attributable to a particular landcover class in a given area).  161 

Note: All WorldClim data is from Version 2 of the datasets.  162 

  163 
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Supplementary Information 2: Description of Statistical 164 

Methodologies  165 

Negative Binomial Gaussian Process – Fitting and Inference: 166 

In-line with previously work modelling the seasonal dynamics of different Anopheline mosquito 167 

species from across India2, we utilise a flexible Gaussian Process modelling framework to 168 

temporally interpolate between the monthly-catch datapoints and smooth the raw, noisy and 169 

overdispersed catch data. Gaussian processes specify a distribution over functions such that 170 

any finite set of function values 𝑓(𝑥1), 𝑓(𝑥2), … 𝑓(𝑥𝑁) have a joint Gaussian distribution13. The 171 

Gaussian process is entirely specified by its mean function: 172 

𝐸[𝑓(𝑥)] =  𝜇(𝑥) 173 

and by its covariance function: 174 

𝐶𝑜𝑣[𝑓(𝑥), 𝑓(𝑥′)] =  𝑘(𝑥, 𝑥′) 175 

The covariance function is also known as the kernel and defines, based on the Euclidean 176 

distance between any two points, their covariance (and thus the covariance matrix of the 177 

Gaussian Process when all pairwise combinations of points are considered). Many different 178 

forms of the kernel are possible that each encode different prior information about how we 179 

expect two datapoints (𝑥 and 𝑥′ in this instance) to be similar, and the distance over which we 180 

expect this similarity to persist. Given that mosquito population dynamics are typically 181 

characterised by seasonally repeating patterns occurring either, a periodic kernel function was 182 

used to define the covariance between pairs of points: 183 

    𝑘(𝑥, 𝑥′) = 𝛼2exp (−
2

𝑙2
𝑠𝑖𝑛2 (

𝜋|𝑥 − 𝑥′|

𝑝
)) 184 

where 𝑝 represents the period over which we would expect points to show similar dynamics 185 

(i.e. a period of twelve would imply we expect points separated by 12 months to be most 186 

similar), 𝛼 specifies the magnitude of the covariance, and 𝑙 represents a lengthscale 187 

parameter further constraining the extent to which two values separated by a given time can 188 

co-vary. 189 

Bayesian inference and fitting of normal Gaussian Processes typically follow this hierarchical 190 

formulation:  191 

𝜃 ~ 𝜋(𝜃) 192 

𝑓 ~ 𝐺𝑃(0, 𝐾𝜃(𝑥)) 193 

𝑦𝑖  ~ 𝑀𝑉𝑁(𝑓(𝑥𝑖), 𝜎2) ∀𝑖 ∈ {1, … , 𝑁} 194 

where 𝜃 represents a vector of hyperparameters involved in defining the kernel’s properties, 195 

𝑓 is a distribution of functions from a zero-mean Gaussian Process with covariance function 196 

𝐾𝜃, 𝑓(x) are function evaluations at times 𝑥, and 𝑦 the observed data. We modify this structure 197 

to account for specific characteristics of the mosquito data being utilised – specifically that the 198 

data are integer counts, that mosquito catch data is rarely normally distributed and frequently 199 

displays high levels of overdispersion (a common property of biological systems generally). 200 

We therefore adapted the above framework to accommodate a Negative Binomial likelihood, 201 

leading to the following inferential framework: 202 
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 𝑝, 𝛼, 𝑙  ~ 𝜋( 𝑝, 𝛼, 𝑙 ) 203 

𝒇~ 𝐺𝑃(0, 𝐾𝜃(𝑥)) 204 

where:                𝑘(𝑥, 𝑥′) = 𝛼2exp (−
2

𝑙2
𝑠𝑖𝑛2 (

𝜋|𝑥 − 𝑥′|

𝑝
)) 205 

𝑦𝑖  ~ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑒𝑓(𝑥𝑖), 𝜎) ∀𝑖 ∈ {1, … , 𝑁} 206 

where 𝑒𝑓(𝑥) is used to reflect the fact that we use a log link between the observed counts and 207 

the underlying latent process reflecting the population dynamics, and 𝜎 represents the 208 

overdispersion parameter of the Negative Binomial distribution.  209 

Prior Specification 210 

Per previous work2, prior distributions for the estimated parameters were defined as follows: 211 

𝑙 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(2, 12) 212 

𝛼 ~ 𝐻𝑎𝑙𝑓 − 𝑁𝑜𝑟𝑚𝑎𝑙(0, √𝑆𝐷 (𝑦)) 213 

𝑝 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(12, 42) 214 

𝜎 ~ 𝐻𝑎𝑙𝑓 − 𝑁𝑜𝑟𝑚𝑎𝑙(0, 82) 215 

Weakly informative priors were set on the scaling factor 𝛼, the period, 𝑝, and the 216 

overdispersion parameter, 𝜎. The prior for the kernel period (𝑝) was centred on 12 (a value of 217 

the period that would represent annual variation being the dominant temporal modality) to 218 

reflect our prior belief that observed variation in mosquito abundance is likely to cycle annually. 219 

However, recognising that other temporal patterns of fluctuating abundance are possible, we 220 

placed a large standard deviation on 𝑝 to allow the model to accommodate instances of 221 

bimodality or periods operating across timescales longer than a year. We placed lower and 222 

upper bounds on 𝑝 at 4 and 18 months respectively, to avoid identifiability issues arising from 223 

the lack of data at temporal resolutions below and above these bounds.  224 

Model Fitting and Parameter Inference 225 

This Negative Binomial Gaussian Process were fitted using a Bayesian framework 226 

implemented in STAN, a probabilistic programming language for statistical inference written 227 

in C++ that employs the No-U-Turn sampler, a variant of the gradient-based Hamilton Monte 228 

Carlo algorithm for inference14. For each time-series, 2 chains of 20,000 iterations were run 229 

for purposes of model fitting and parameter inference. Half of each chain’s iterations were 230 

discarded as burn-in/the adaptive phase of the sampling, leaving a total of 20,000 iterations 231 

available for inference. Measures of MCMC convergence such as the Gelman-Rubin statistic 232 

were monitored in all cases and were all consistently < 1.02.  233 

Fitted Time Series Normalisation and Von Mises Distribution Fitting 234 

After having fitted and smoothed the mosquito catch time-series, we normalised each in the 235 

following way: 236 

𝑝𝑖 =  
𝑦𝑖

∑ 𝑦𝑖
 237 

where 𝑝𝑖 is the proportion of the annual catch recorded at timepoint 𝑖. This was done in order 238 

to establish comparability across the time series (which varied substantially in the absolute 239 
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numbers of Anopheles stephensi caught). We then further characterised the periodic 240 

properties of these time series by fitting Von Mises distribution to the time-series. The Von-241 

Mises distribution is a continuous probability distribution that exists on the circle, with range 0 242 

to 2𝜋. It is the circular analogue of the normal distribution (which exists on the line), with the 243 

probability density function for the angle 𝑥 given by: 244 

𝑓(𝑥|𝜇, 𝜅) =  
𝑒𝜅 cos (𝑥−𝜇) 

2𝜋𝐼0(𝜅)
 245 

where 𝐼0(𝜅) is the modified Bessel function of order 0, the parameter 𝜇 is a measure of location 246 

(analogous to the mean of the normal distribution, describing where on the circle the 247 

distribution is clustered around) and 𝜅 describes the concentration of density around 𝜇 (and 248 

thus its inverse is a measure of dispersion, analogous to 𝜎2 for the normal distribution. We 249 

fitted two sets of Von Mises densities to the normalised time series, the first containing a single 250 

component: 251 

𝑓(𝑥|𝜇1, 𝜅1) = 𝑓1(𝑥|𝜇1, 𝜅1) 252 

and another with two-components, formulated as: 253 

𝑓(𝑥|𝜇1, 𝜅1, 𝜇2, 𝜅2, 𝑤) = 𝜔𝑓1(𝑥|𝜇1, 𝜅1) + (1 − 𝜔)𝑓2(𝑥|𝜇2, 𝜅2) 254 

where 𝑥 represents the normalised mosquito count formulated as a random variable on the 255 

circle (i.e. 𝑥 =
2𝜋𝑝𝑖

12
). Fitting was undertaken using the optim function in R, with the root mean 256 

squared error as the loss function. The outputs from this fitting were then included in the 257 

process generating aggregate summaries of the temporal properties of the time-series, a 258 

process described in further detail below.  259 

Time Series Characterisation and Analysis 260 

To characterise the temporal properties of each time-series, we calculated a series of 261 

summary statistics for each, drawing on previous work carried out exploring the empirical 262 

structure of time series12. In doing this, we can make explicit comparisons between time-series 263 

about key aspects of their temporal properties (e.g., the degree or timing of seasonality), and 264 

in doing so, identify time-series with similar statistical and temporal properties. These 265 

summary statistics were the following:  266 

1. Periodic Kernel Median: Fitting the Negative Binomial Gaussian Process with a 267 

periodic kernel allowed inference of the period, 𝑝, providing us with an estimate of the 268 

frequency of repeating patterns in the monthly abundance of mosquitoes. An estimate 269 

of 𝑝 was calculated for each fitted time series, with the median value of 𝑝 across the X 270 

HMC iterations for each time-series used here  271 

2. Kullback-Leibler Divergence: Also known as the relative entropy, the Kullback-272 

Liebler divergence represents a measure of how different one probability distribution 273 

is from a second probability distribution (where a value of 0 indicates that the two 274 

distributions are identical). It is specified in the following manner: 275 

𝐸𝑖 =  𝑝𝑖𝑙𝑜𝑔2 (
 𝑝𝑖

 𝑞𝑖
) 276 
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𝐸 = ∑ 𝑝𝑖𝑙𝑜𝑔2 (
 𝑝𝑖

 𝑞𝑖
)

12

𝑖=1

 277 

where  𝑝𝑖 is the average value of the normalised time series for month 𝑖, and 𝑞𝑖 = 1/12 278 

for 𝑖 = 1, … , 12. This operation therefore measures the deviation of a normalised time 279 

series from a uniform distribution, in doing so, informing about the extent to which a 280 

seasonal peak (or peaks) is present in the time series. 281 

3. Time Difference Between Vector Density Peak and Rainfall Peak Timings: The 282 

time difference between the highest recorded vector density and the highest recorded 283 

rainfall for that year. 284 

4. Proportion of Points Greater Than 1.65x the Mean: For each fitted, normalised time 285 

series, the proportion of points greater than 1.65x the time-series’ mean was 286 

calculated, informing the degree and width of any seasonal peaks.  287 

5. Number of Peaks: Estimates of the parameters governing the fitted two component 288 

Von Mises distribution were used to infer the number of peaks in each time series. 289 

Specifically, and in-keeping with previous work2, a time series was deemed to possess 290 

one peak if the value of the Von Mises component weighting was either < 0.3 or > 0.7 291 

and the difference in means was < 
2𝜋

3
 or > 

4𝜋

3
 , indicating that the majority of the density 292 

could be attributed to one of the two components, and that the two means identified 293 

during the fitting were temporally close to one another. Otherwise, a time series was 294 

judged to possess two peaks.  295 

6. Von Mises 1 Component Mean: If a 1 component Von Mises distribution was 296 

preferred, then the Von Mises mean corresponding to the maximum likelihood 297 

predicted value was used. If the 2 component Von Mises distribution was preferred, 298 

the value for this operation for that particular time series is set to -5.  299 

7. Von Mises Two Component Weight: Estimates of the weight parameter governing 300 

the two component Von Mises distribution were also used to infer the bimodality of the 301 

time series. The weight specifies the proportion of each component that is used to fit 302 

the time series and thus a very high (or very low weight) indicates the dominance of a 303 

single component and the comparatively small contribution of the other.  304 

8. Maximum Percentage of Total Annual Catch In Any 3 Month Period: In-keeping 305 

with previous, operationally aligned estimates of malaria seasonality15, we calculated 306 

using a sliding 3-month window the maximum percentage of the total annual catch that 307 

was caught in any 3 month period.  308 

Principal Components Analysis and Clustering 309 

Principal Components Analysis (PCA) is a statistical procedure that utilises an orthogonal 310 

transformation to convert a set of correlated variables (in this case the outputs of the 7 311 

mathematical operations described above for each of the time series) into a set of linearly 312 

uncorrelated variables (known as the “principal components”). In doing so, this allows us to 313 

summarise this set of variables with a smaller number of representative variables that together 314 

explain the majority of the variability in the variables. Reducing the dimensionality of the 315 

dataset in this way facilitates visualisation of time series properties (as defined by the 316 

mathematical operations) as well as clustering of the time series into groups which share 317 

similar properties (clustering algorithms typically perform poorly in high dimensional settings, 318 

necessitating the use of PCA as described here). Clustering was then undertaken using the 319 

k-means clustering algorithm, using the first four PCA components that together described 320 

85% of the total variation present in the data.  321 
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Random Forest Modelling and Prediction of Seasonality 322 

Random Forests are a machine learning, ensemble-based method that work by constructing 323 

a collection of decision trees that together explain the results (where results are either a 324 

continuous outcome variable in the regression context, or a binary indicator in the classification 325 

context)16. The outputs of these decision trees are subsequently aggregated in a statistically 326 

principled and coherent way to produce a “forest” (or ensemble) of trees that together produce 327 

predictions for comparison with data. They have previous been shown to provide significant 328 

improvements in accuracy over traditional linear regression based approaches, particularly in 329 

contexts where non-linear relationships or interactions between covariates are likely present 330 

and to be relevant to prediction of an outcome17.  331 

We used a Random Forest based approach to either 1) classify time-series cluster 332 

membership (i.e. predict whether a time-series belonged to either Cluster 1 or Cluster 2, as 333 

defined via the PCA and k-means clustering analysis described above); or 2) predict An. 334 

stephensi time-series seasonality (defined as the percentage of total annual vector density in 335 

any continuous 3-month period). These models were fitted using the software package 336 

Ranger18, implemented in the tidymodels framework for R11, with 6-fold cross-validation 337 

utilised to optimise hyperparameter combinations; presented results are based on averaging 338 

the results of 25 separate iterations of cross-validation and model fitting (to account for 339 

stochasticity in model fitting), and any predictions made using out-of-bag model estimates in 340 

all instances. Due to significant imbalances in class size across the time-series clusters (49 341 

time-series in Cluster 1 compared to only 16 time-series in Cluster 2, we carried out 342 

upsampling using the SMOTE (synthetic minority over-sampling technique19) algorithm. We 343 

also carried out model fitting without this upsampling, the results of which are presented in 344 

Supp Fig. 6.  345 

In all instances, out-of-sample predictive accuracy was assessed using 6-fold cross-validation 346 

(CV) and used to optimise the hyperparameters associated with the Random Forest method 347 

algorithm. Random Forest models were fitted to the training dataset (i.e. the full dataset minus 348 

one of the CV folds) and then model accuracy assessed on the remaining fold of data not 349 

included in model training. In the case of the cluster classification example, the metric used to 350 

evaluate model performance was the area under the curve (AUC). In the case of the 351 

regression prediction of seasonality, the metric used to evaluate model performance was the 352 

root mean squared error (RMSE). The Random Forest hyperparameters providing the best 353 

out-of-sample AUC/RMSE were then selected, and a final Random Forest model then fitted 354 

on the full set of data available. Predictive accuracy (assessed via AUC/RMSE) was then 355 

calculated for the entire dataset by using out-of-bag predictions for each sample i.e. 356 

predictions on each training sample using only the trees that did not have that training sample 357 

in their bootstrap sample. We also calculated both permutation variable importance and 358 

generated partial dependency plots20 for each model to assess the contribution of specific, 359 

individual environmental covariates to whether a time-series had a single seasonal peak or 360 

not. Together these methods allow evaluation of the importance of each included covariate to 361 

model predictive accuracy, and in turn, allows us to “rank” covariates according to their 362 

contribution to the predictive performance of the model. This entire process was repeated 25 363 

times in order to average over the stochasticity and variation inherent in the Random Forest 364 

fitting process.  365 

We also carried out an additional sensitivity analysis where a set of the available data (n=12 366 

time-series) was held-out at the onset, and the random forest model trained (using 6-fold 367 
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cross-validation) on the remaining available data (n=53 time-series total, with 43 time-series 368 

used in model fitting and 10 time-series used for performance evaluation in each of the cross-369 

validation folds). Optimal hyperparameters were selected in the same way as described 370 

above, and then a final model fitted to the full, non-held out data (n=53 time-series), and model 371 

predictive accuracy assessed by evaluating performance on the held-out data (n=12 time-372 

series).  373 

Probability of Detecting Anopheles stephensi With Different Surveillance and 374 

Monitoring Strategies 375 

We explore the implications of seasonal variation in An. stephensi abundance on the 376 

probability of detecting the vector in entomological surveillance and monitoring using human 377 

landing catches. Note that what follows below assumes there is no seasonal variation in 378 

factors other than mosquito abundance (such as resting preferences) that might influence the 379 

probability of An. stephensi being caught in a human landing catch. In the absence of 380 

estimates of overall mosquito population size, we first start by considering an arbitrary 381 

Entomological Inoculation Rate (𝐸𝐼𝑅, the number of infectious bites an individual receives 382 

each year) and Sporozoite Rate (𝑆𝑅, the prevalence of sporozoites in the mosquito 383 

population), which together define an overall annual biting rate (𝐴𝐵𝑅). 384 

𝐴𝐵𝑅 =  
𝐸𝐼𝑅

𝑆𝑅
 385 

For the purposes of the results in the main text, we select an 𝐸𝐼𝑅 of 1 and an 𝑆𝑅 of 0.05 to 386 

give an 𝐴𝐵𝑅 of 20, though we stress these choices are arbitrary and meant to be illustrative 387 

only, and that the methods below could be used to calculate the results for any combination 388 

of 𝐸𝐼𝑅 and 𝑆𝑅. For a given 𝐴𝐵𝑅 and for each An. stephensi time-series 𝑖, this 𝐴𝐵𝑅 is 389 

proportionally divided up over the course of 365 days according to the normalised vector 390 

density at each timepoint, such that the biting rate 𝑏 for time-series 𝑖 on day 𝑑 is given by: 391 

𝑏𝑖,𝑑 =  𝐴𝐵𝑅 (
𝐷𝑖,𝑑

∑ 𝐷𝑖,𝑑
𝑑=365 
𝑑=1

) 392 

where 𝐷𝑖,𝑑 is the normalised vector-density on day 𝑑 for time-series 𝑖. Because the sampling 393 

resolution of the studies we collated was never finer than monthly, we then use 𝑏𝑖,𝑑 to calculate 394 

an average daily biting rate for each month, 𝑏𝑖,𝑚. 𝑏𝑖,𝑚. therefore describes the expected daily 395 

number of bites an individual receives in month 𝑚. The number of bites an individual would 396 

receive during a specific day of human landing catch sampling during month 𝑚 can then be 397 

considered a draw from a Poisson distribution with rate as follows: 398 

𝐶𝑖,𝑚 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 = 𝑏𝑖,𝑚) 399 

The expected number of mosquitoes caught over multiple days and months of mosquito 400 

sampling can then be calculated by exploiting the following property of the Poisson distribution: 401 

𝑋1 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1) & 𝑋2 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆2) 402 

then 𝑋1 + 𝑋2 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1 + 𝜆2) 403 

Given this, for time-series 𝑖, carrying out mosquito sampling for 𝑛𝑚 consecutive months 404 

starting at month 𝑗, and within each month carrying out 𝑛𝑑 days-worth of sampling, the total 405 

number of An. stephensi expected to be caught is given as follows: 406 
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𝐶𝑖,𝑗,𝑛𝑚,𝑛𝑑
 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 ( ∑ 𝑛𝑑𝑏𝑚)

𝑚=(𝑗+𝑛𝑚−1)

𝑚=𝑗

) 407 

from which the probability of not sampling An. stephensi (i.e. the total number of An. stephensi 408 

caught is equal to 0) during that sampling period can be calculated.  409 

For each time-series, we then identified the month in which monthly rainfall peaked, and the 410 

month in which vector density was highest (noting that these months were very rarely the 411 

same month). We then calculated the cumulative probability of An. stephensi detection under 412 

a range of different surveillance strategies. Specifically three strategies were simulated: 413 

• Vector-Peak Timed: Starting the survey at the month with peak vector density (noting 414 

that in the absence of pre-existing detailed entomological information this is largely a 415 

hypothetical quantity, meant to illustrate the maximum detection probability that could 416 

be achieved).  417 

• Rainfall-Peak Timed: Starting the survey at the month with peak rainfall. 418 

• Random Month Timed: The expected cumulative probability of detection achieved if 419 

the survey was started during a random month (calculated in practice by simulating 420 

survey starting in each of the year’s 12 months and then calculating the average 421 

cumulative probability of these surveys).  422 

In addition to varying the timing of the survey (which varies according to the surveillance 423 

strategy considered, as described directly above), we also varied the amount of sampling effort 424 

(number of days sampled within each month) and the overall duration of the (i.e. how many 425 

consecutive months were sampled). Note that the aim here is not to describe the exact 426 

probability of missing An. stephensi in any given entomological survey, as this will depend on 427 

a wide array of other, poorly defined and heterogeneous factors (such as type of catch 428 

methodology used etc). Instead, the aim is to highlight how variation in seasonal dynamics 429 

can influence the nature of surveillance required to successfully An. stephensi.  430 

Modelling of Malaria Transmission and the Impact of Anopheles stephensi 431 

We integrated the temporal profiles of An. stephensi abundance into a well-established 432 

deterministic compartmental model of Plasmodium falciparum malaria transmission and 433 

disease21–23 to explore the implications of the vector’s establishment and seasonality on the 434 

dynamics of malaria transmission, with a particular focus on areas where malaria transmission 435 

is currently low or absent. What follows is a description of the mathematical modelling 436 

framework in general terms, followed by specific details about how exactly this framework was 437 

used to model malaria transmission underpinned by An. stephensi in settings where malaria 438 

is currently absent or only minimally present. 439 

The deterministic malaria model used here considers both human and mosquito populations. 440 

Humans begin as Susceptible (S), and upon infection (at a rate which is dependent on the 441 

force of infection they experience), progress to either Asymptomatic (A) or clinical disease, 442 

with the comparative probability of these two outcomes depending on the degree of acquired 443 

natural immunity due to previous exposure to the parasite. If an individual progresses to 444 

clinical disease, they enter either a Treated (T) or Clinical Disease (D) state that depends on 445 

the probability of receiving treatment. For those treated, individuals progress through a period 446 

of prophylactic protection following treatment (P), and then return to the susceptible 447 

compartment. For those developing clinical disease, they remain symptomatic for the duration 448 
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of the disease, before moving to an asymptomatic state (A, detectable by light microscopy), 449 

before subsequently moving to a submicroscopically infected state (U, not detectable by light 450 

microscopy). Individuals who are currently asymptomatically infected (including individuals in 451 

both the A and U states) can be reinfected and develop clinical disease once again – if this 452 

does not occur, they subsequently clear the infection and return to the susceptible state.  453 

Adult mosquito populations and their preceding juvenile stages are also explicitly modelled. 454 

Immature mosquitoes start off as larvae, divided into early and late stage (Es and Ls 455 

respectively) which then mature into pupae (P) before eventually maturing into adult 456 

mosquitoes. Adult mosquitoes are further stratified according to infection with P.falciparum 457 

status – they begin as susceptible (Sm) and upon infection, progress to an exposed (but un-458 

infectious, Em) state, and then onto the infectious state (Im) following the extrinsic incubation 459 

period (EIP, assumed to be constant over time). Mosquitoes are infected through exposure to 460 

humans currently possessing transmissible infections i.e. the treated (T), clinical disease (D), 461 

asymptomatic (A) and submicroscopic (U) infection states.  462 

Seasonality in mosquito abundance is incorporated through a flexible, time-varying carrying 463 

capacity that in broad terms describes temporal variation in the ability of the local environment 464 

to support mosquito breeding. The value of this carrying capacity relative to the size of the 465 

mosquito population influences the mortality of early and late-stage larvae, which as previous 466 

modelling work has shown, enables the model to accurately and adequately capture temporal 467 

fluctuations in mosquito abundace24. We integrate each of the seasonal profiles of An. 468 

stephensi density implied by the corresponding time-series of catch data into the model, 469 

matching the carrying capacity to the empirically observed temporal variation in An. stephensi 470 

abundance. Estimates of the bionomic properties of An. stephensi (specifically the mosquito’s 471 

daily mortality, degree of anthropophagy, degree of endophily and the proportion of bites taken 472 

on individuals indoors and/or in bed) were taken from previous work that reviewed the 473 

properties3, and the vector to human ratio arbitrarily set to 20, which corresponds to 474 

approximately 9% malaria prevalence in a setting where the risk of malaria is constant year 475 

round (i.e. a perennial setting). Indoor residual spraying (IRS) is assumed to reduce malaria 476 

burden primarily by both killing adult mosquitoes and deterring them from biting and feeding – 477 

specifically, IRS can either repel before biting and feeding, or kill following biting (when the 478 

vector rests on a sprayed wall). The efficacy of IRS decays over time due to a loss of 479 

insecticide. The efficacy of the different IRS compounds considered (bendiocarb, clothiandin 480 

and pirimiphos methyl), as well as the different rates of efficacy decay were parameterised 481 

using Sherrard-Smith et al 201825. We modelled the impact of a single round of IRS, timed 482 

according to a range of different strategies that largely mirror the strategies described in the 483 

section on surveillance and entomological monitoring above. Specifically, these were: 484 

• Optimal-Timing: Starting the survey at the timepoint where the reduction in incidence 485 

is maximised (noting that in the absence of pre-existing detailed entomological 486 

information on the timing of peak vector abundance, this is a hypothetical quantity, 487 

meant to illustrate the maximum impact that could be achieved with perfect 488 

information).  489 

• Rainfall-Peak Based Timing: Starting the survey at the midpoint of the month with 490 

peak rainfall. 491 

• Random Month: The expected reduction in malaria incidence achieved if the IRS 492 

campaign was started during a random month (calculated in practice by simulating 493 
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survey starting in each of the year’s 12 months and then calculating the average 494 

cumulative probability of these surveys).  495 

In all cases, the impact was calculated by comparing the reduction in malaria burden (as 496 

measured by total annual incidence in the 12-month period following spraying) compared to a 497 

counterfactual of no IRS.  498 

  499 
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 500 

Supplementary Figure Model Schematic: Humans exist in either S (Susceptible), A 501 

(asymptomatic infection), T (infected and treated), D (infected and have clinical disease), U 502 

(submicroscopically infected) or P (prophylactically protected from infection by treatment 503 

received). The full-life cycle of the mosquito is modelled, with states including E (eggs/early 504 

larvae), L (late instar larvae), P (pupae), and finally M (mature adult mosquitoes). Mosquitoes 505 

in the M state begin in state S (susceptible) and upon infection more to a latently infected (but 506 

not yet infectious state) denoted by E. Upon becoming infectious they transition to the I state. 507 

Arrows show transitions between states, with the yellow oval indicating a decision point in the 508 

human part of the model based on whether the individual receives treatment or not.  509 

  510 
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Supplementary Information 3: Additional Figures and Results 511 

 512 

513 
Supplementary Figure 1: Results of model fitting to the longitudinal entomological data collated in this study. Reviews of the literature 514 

in tandem with previously published databases of entomological data identified 65 Anopheles stephensi time-series matching the inclusion criteria 515 

(>10 months of catch data at monthly temporal resolution or finer), and a negative binomial gaussian process with period kernel fitted to each 516 

time-series. For the results presented above, black points are the data, and the lines represent the model output, coloured according to the 517 

country in which the study was conducted. Line indicates the mean model output, with the shaded ribbon delineating the 95% credible interval 518 

(CI).   519 
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 520 

 521 

 522 

Supplementary Figure 2: Archetype/Cluster Temporal Properties. A series of mathematical operations were applied to the fitted time-series 523 

to characterise and explore their temporal properties. The results of this characterisation were then clustered using the k-means algorithm. For 524 

each cluster, the mean temporal profile is displayed, as well as the underlying distribution of values for each temporal property for each cluster 525 

(where the values for a given temporal properties for all time-series have first been normalised and standardised to have mean 0 and unit 526 

variance). For further information on each of these operations, see Supplementary Information: Time Series Characterisation and Analysis.  527 

 528 
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 529 

 530 

 531 

 532 

 533 

Supplementary Figure 3: Timing of Vector Density Peak Relative to Rainfall Peak, 534 

Stratified by Cluster. For each study location and time-series, we calculated the time-535 

difference (in months) between the peak vector density and peak monthly rainfall. Our results 536 

highlighted systematic differences between clusters, but also significant variation within 537 

clusters.  538 

  539 
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 540 

 541 

 542 

 543 

 544 

Supplementary Figure 4: Results of Clustering For 4 Clusters Instead of 2. In order to 545 

further investigate the different patterns of temporal dynamics present in the collated dataset, 546 

we re-ran the k-means clustering algorithm this time specifying 4 clusters. The less seasonal 547 

cluster from the 2 cluster analysis in the main text (Cluster 2 in the main text results) was 548 

retained (here Cluster 3), and Cluster 1 from the main text was further disaggregated into 3 549 

different clusters (here, Clusters 1, 2 and 4), each defined by different peak timings (mean 550 

timing of vector density peak 7, 8.25 and 5.86 months after January for Clusters 1, 2 and 4 551 

respectively) and the timing of the vector peak relative to peaks in rainfall (rainfall peak on 552 

average 1.03 and 2.32 months before vector density peak for Clusters 1 and 2, 1.09 months 553 

after vector density peak on average for Cluster 4).  554 

 555 

  556 
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 557 

 558 

 559 

 560 

Supplementary Figure 5: Partial Dependence Plots for Covariates Used in the Random 561 

Forest Classification Modelling. The y-axis on the left shows the probability of the time-562 

series belonging to Cluster 2 (i.e. a high probability indicates the time-series is predicted to 563 

likely belong to Cluster 2, a low probability indicates the time-series likely belongs to Cluster 564 

1). The x-axis describes the value of the (scaled, normalised) covariate.  565 

  566 
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 567 

 568 

 569 

 570 

 571 

Supplementary Figure 6: Collated An. stephensi time-series, disaggregated according to urbanicity and cluster membership. Cluster 1 and 572 

Cluster 2 time-series from rural locations and urban locations are plotted separately. Coloured line indicates the mean and ribbon indicates the 573 

90% range spanned by the group of time series belonging to each displayed grouping. The average seasonality (defined as the maximum 574 

percentage of total annual incidence in any continuous 4-month period) is also displayed for each group. 575 

  576 



C. Whittaker et al.  An. stephensi Population Dynamics  23 

 577 

 578 

 579 

 580 

Supplementary Figure 7: Random Forest Classification Results Without Upsampling 581 

Cluster 2. Due to the extreme class-imbalance of Clusters 1 and 2 (49 vs 16 time-series 582 

respectively), the results presented in the main text are following upsampling of the Cluster 2 583 

time-series to create a dataset with equal numbers of time-series belonging to each cluster. 584 

As a sensitivity analysis, we also carried out the random forest fitting without upsampling and 585 

assessed both model fit (as measured by AUC, (A)) and variable importance (B). Model 586 

performance was somewhat reduced compared to the upsampled data (mean AUC of 0.81 vs 587 

mean AUC >0.9 for the upsampled dataset), whilst variable importance results were broadly 588 

consistent across both analyses, with population per square kilometre and various land-cover 589 

measures all emerging as important predictive variables. We also present partial dependence 590 

plots for all of the included covariates (C). The y-axis on the left shows the probability of the 591 

time-series belonging to Cluster 2 (i.e. a high probability indicates the time-series is predicted 592 

to likely belong to Cluster 2, a low probability indicates the time-series likely belongs to Cluster 593 

1). The x-axis describes the value of the (scaled, normalised) covariate.  594 

 595 
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 596 

Supplementary Figure 8: Random Forest Classification Results With Hold-Out Data. Due to the overall sample size (n = 65 time-series), 597 

the results presented in the main text were generated using a random forest-based workflow where final model fitting (using hyperparameters 598 

tuned using 6-fold cross-validation) utilised the entirety of the dataset. As a sensitivity analysis, we also carried out the random forest fitting 599 

holding out a small portion of the dataset (n = 9) during model fitting, with model performance subsequently evaluated on this held-out data. 600 

Results presented above are in the case where data was upsampled to address class imbalance (top) and where no upsampling was carried out 601 

(bottom).  602 
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 603 

 604 

 605 

 606 

 607 

 608 

Supplementary Figure 9: Random Forest Prediction of Percentage of Vector Density In 609 

Any 3 Month Period. As a further sensitivity analysis, we used a random forest modelling 610 

approach to predict the percentage of vector density occurring in a single continuous 3-month 611 

period. Results presented above are the average of 25 independents random forest model 612 

fittings, with no upsampling of the data carried out, and the final model fitted (using 613 

hyperparameters tuned using 6-fold cross-validation) to the full dataset. Model predictive 614 

power was moderate, with correlation between predicted and actual values = 0.43.    615 
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 616 

Supplementary Figure 10: Sources and Locations of Anopheles stephensi Time-Series Data According to Urban/Rural Assignment. 617 

Collated time-series are displayed above coloured according to 1) whether or not the study was carried out in an urban or rural location; and 2) 618 

which cluster they were assigned to. 619 
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